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Wavelet Transform”, IEEE Trans. Signal Processing, vol.
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Generalized Tree-Based
Wavelet Transform — The Basics

This part is taken from the following two papers :

O I. Ram, M. Elad, and I. Cohen, “Generalized Tree-Based Wavelet Transform”, IEEE Trans.
Signal Processing, vol. 59, no. 9, pp. 4199-4209, 2011.

Q I. Ram, M. Elad, and I. Cohen, “Redundant Wavelets on Graphs and High Dimensional
Data Clouds”, IEEE Signal Processing Letters, Vol. 19, No. 5, pp. 291-294 , May 2012.
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Problem Formulation

 We are given a graph:

o The i — th node is characterized
by a d-dimen. feature vector x;

o The i — th node has a value f;

o The edge between the i — th and
J — th nodes carries the distance
w(gi,gj) for an arbitrary distance
measure w(-,-).

f1

1 Assumption: a “short edge”
implies close-by values, i.e.

w(&-,gj) small - |f; — fj| small

for almost every pair (i, ).
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A Different Way to Look at this Data

O We start with a set of d-dimensional vectors X = {x1,x,, ..., xy } € IR

These could be:
= Feature points for a graph’s nodes,
= Set of coordinates for a point-cloud.

d A scalar function is defined on
these coordinates, f: X = IR,

giving f = [fy, f2, ..., fn -

d We may regard this dataset as OO OO OO0 0 00
dimensional function f: IR* - R.

d The assumption that small W(Ef‘ gj) in'?plies small |ﬁ — f}| for almost every

- i Ch . " ~
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Our Goal

X
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Why Wavelet?

d Wavelet for regular piece-wise smooth signals is a highly effective
“sparsifying transform”. However, the signal (vector) f is not necessarily
smooth in general.

L We would like to imitate this for our data structure.
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Wavelet for Graphs — A Wonderful Idea

| wish we would have thought of it first ...

; “Diffusion Wavelets”
R. R. Coifman, and M. Maggioni, 2006.

I “Multiscale Methods for Data on Graphs and Irregular .... Situations”
M. Jansen, G. P. Nason, and B. W. Silverman, 2008.

; “Wavelets on Graph via Spectal Graph Theory”
D. K. Hommond, and P. Vandergheynst, and R. Gribonval, 2010.

Z “Wavelet Shrinkage on Paths for Denoising of Scattered Data”
D. Heinen and G. Plonka, 2012.
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http://www.math.duke.edu/~mauro/Papers/DiffusionWavelets.pdf
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-9868.2008.00672.x/pdf
http://arxiv.org/pdf/0912.3848v1.pdf
http://www.wisdom.weizmann.ac.il/~nadler/Publications/wavelets_trees_p18.pdf
http://na.math.uni-goettingen.de/pdf/MR-denoising.pdf

The Main Idea (1) - Permutation

h fa fs fa fs fo 17 Js
*

f o : !
i R T e *
T . .
> Permutation using
fo f2 fa i B f5 fe fs X ={xq{, x5, .., %n}
f * ’: ?
P e 1 I | i T ¢
® I : : I I I !
1 1 1 ! 1 1 >

Permutation 1D Wavelet

f_l‘ P -ll‘ T memem)  Processing

Wavelets for Graphs and Its
Deployment to Image Processing
By: Michael Elad

=



The Main Idea (2) - Permutation

O In fact, we propose to perform a different permutation in each resolution
level of the multi-scale pyramid:

a; }_l —l 2 »al+1 Pl+1 }_l —l 2 »al+2

gr—l2r>»di g —l2>dy,

O Naturally, these permutations will be applied reversely in the inverse
transform.

O Thus, the difference between this and the plain 1D wavelet transform
applied on f are the additional permutations, thus preserving the
transform’s linearity and unitarity, while also adapting to the input signal.
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Building the Permutations (1)

U O

v

Lets start with P;—the permutation applied on the incoming signal.

Recall: the wavelet transform is most effective for piecewise regular signals.
— thus, P, should be chosen such that Pyf is most “regular”.

Lets use the feature vectors in X, reflecting the order of the values, f,. Recall:

Small w(x;, x; ) implies small |f (x;) — f(x;)| for almost every pair (i, /)

Thus, instead of solving for the optimal permutation that “simplifies” f, we
order the features in X to the shortest path that visits in each point once, in
what will be an instance of the Traveling-Salesman-Problem (TSP):

5 N
mPinZZ:Vp(i)—fp(i—lN » mPinZZ:W(xffqu
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Building the Permutations (2)

X6 i 2 1z Ja fs fo f7 Js
= Dy f S
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We handle the TSP task by a . ! T
greedy (and crude) approximation: L E l i ¢
o Initialize with an arbitrary index j; — —
o Initialize the set of chosen indices to Q(1)={j};
o Repeat k=1:1:N-1 times:
* Find X;— the nearest neighbor to X, such that ig€;
« Set Q(k+1)={i};
o Result: the set Q2 holds the proposed ordering.
LF T
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Building the Permutations (3)

O So far we concentrated on P, at the finest level of the multi-scale pyramid.

Q In order to construct P, P,, ..., P, ;, the permutations at the other pyramid’s
levels, we use the same method, applied on propagated (reordered, filtered
and sub-sampled) feature-vectors through the same wavelet pyramid:

. l - . Xg
LP-Filtering (h)
XO =X -‘ PO -‘ & Sub-sampling "

LP-Filtering (h)

000 (um LP-Filtering (h)
l & Sub-sampling . ' & Sub-sampling .
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Why “Generalized Tree ...”?

“Generalized” tree Tree (Haar wavelet)

d Our proposed transform: Generalized Tree-Based Wavelet Transform (GTBWT).

d We also developed a Redundant version of this transform based on the
stationary wavelet transform [Shensa, 1992] [Beylkin, 1992] — also related to the
“A-Trous Wavelet” (will not be presented here).

14
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Treating Graph/Cloud-of-points

1 Just to complete the picture, we should demonstrate the
(R)GTBWT capabilities on graphs/cloud of points.

J We took several classical machine learning train + test
data for several regression problems, and tested
the proposed transform in

= Cleaning (denoising) the data from additive noise;
= Filling in missing values (semi-supervised learning); and
= Detecting anomalies (outliers) in the data.
= The results are encouraging. We shall present herein one such

experiment briefly.

15
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Treating Graphs: The Data

Data Set: Relative Location of CT axial axis slices

Feature vector of
Compute length 384

bones and
air polar

Histograms

Labels: Location in
the body [0,180]cm

More details: Overall 53500 such pairs of feature and value, extracted
from 74 different patients (43 male and 31 female).

~w

v
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http://archive.ics.uci.edu/ml/datasets/Relative+location+of+CT+slices+on+axial+axis

Treating Graphs: Denoising

O . .

- AWGN o Denoising by NLM-

= l = like algorithm

O O

l Find for each point its K-NN in feature-space, and

O

= ‘.‘ 0 compute a weighted average of their labels

O O -

- = Denoising by THR

. . with RTBWT

= . Apply the RTBWT transform to the point-cloud

O labels, threshold the values and transform back
Original Noisy
labels labels
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Treating Graphs: Denoising

35,

noisy signal

RTBWT
NL-means

5 10 15 20
noise standard deviation
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Treating Graphs: Semi-Supervised Learning

” Noisy and Find for each missing point its K-NN in
0 AWGN missing feature-space that have a label, and
= labels compute a weighted average of their labels
= Discard
. % of the Filling-in by NLM-
" mm) E— P~ =) * =)
— . labels like algorithm
= randomly
" Y H
. . gy— —
z Denoising Denoising
Original by NLM by RTBWT
labels

. £

Projection Projection
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Treating Graphs: Semi-Supervised Learning

35,

30

25

% 20
o
%
15 Corrupted
NL-means
10 NL-means (iter 2)

RTBWT (iter 2)

NL-means (iter 3)
5 - RTBWT (iter 3)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
# missing samples
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Treating Graphs: Semi-Supervised Learning

Corrupted

NL-means
NL-means (iter 2)
RTBWT (iter 2)
NL-means (iter 3)
RTBWT (iter 3)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
# missing samples
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Using GTBWT for
Handling Images

This part is taken from the same papers mentioned before ...

O I. Ram, M. Elad, and I. Cohen, “Generalized Tree-Based Wavelet Transform”, IEEE Trans.

Signal Processing, vol. 59, no. 9, pp. 4199-4209, 2011.

Q I. Ram, M. Elad, and I. Cohen, “Redundant Wavelets on Graphs and High Dimensional
Data Clouds”, IEEE Signal Processing Letters, Vol. 19, No. 5, pp. 291-294 , May 2012.
v Wavelets for Graphs and Its
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Turning an Image into a Graph?

d Now, that the image is organized as a graph (or
point- cloud), we can apply the developed transform.

 The distance measure w(e, ®) we will be using is Euclidean.

d After this “conversion”, we forget about spatial proximities.

[ The overall scheme becomes “yet another” patch-based
image processing algorithm ...

Wavelets for Graphs and Its
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Patches ... Patches ... Patches ...

In the past decade we see more and more researchers suggesting to
process a signal or an image by operating on its patches.

Various ldeas:

Kernel regression

Sparse representations
Locally-learned dictionaries
BM3D

Structural clustering
Gaussian-mixture-models

Non-local sparse rep.
Self-similarity

Wavelets for Graphs and Its 24
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Our Transform

>
: f

Lexicographic ordering of
the N pixels

[ All these operations could
be described as one linear
operation: multiplication of
f by a huge matrix Q.

[ This transform is adaptive
to the specificimage.
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We obtain an array of
dN]J transform
coefficients
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The Representation’s Atoms

SEEESNEEESEEEEEEEEEEEEEEEEEEEEEEEEEE
SEEEENESESEEEEEEEEEEEEEEEEEEEEEEEEEE
SEEEENEEEEEEEEFrmmmEmm SESEEEEEEEEEEEEEE
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SEEEESEEEEEEENn! IBEA VNEEEEEEEEEEEEE
SEEEESEEEEEEENn| mEE ‘EEEEEEEEEEEEn
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SEEEESEEEEEEENn| @y . GAEEEEEEEEEEEEE
SEEEENEEEEEEEY’ = . AJIEEEEEEEEEEER
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Every column in D is an
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Lets Test It: M-Term Approximation

/ S, {Qf}
TN N

Original Image

4

: ) b
: St} :
E f Multiply by D: IV.I
Inverse GTBWT non-
It - £]|° = lif - DS, {12 :
as a function of M S T T— E f
x4 avelets for Graphs and Its E
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Lets Test It: M-Term Approximation

For a 128x128 center portion of
the image Lenna, we compare the
image representation efficiency of
the

50

O GTBWT 45
J A common 1D wavelet transform 40
J 2D wavelet transform x 35

o 30

<

55

0

2000

4000 6000
# Coefficients

t<10[0]0)

10000
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Lets Test It: Image Denoising

f f Denoising » f Approximation
- Algorithm by the
t THR algorithm:

V=N, f = DSy i)

Noisy image €): Forward D: Inverse Output image

GTBWT GTBWT

Wavelets for Graphs and Its
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Image Denoising — Improvements

Cycle-spinning: Apply the above scheme several (10) times, with a
different GTBWT (different random ordering), and average.

Reconstructed

image

Wavelets for Graphs and Its
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Image Denoising — Improvements

Sub-image averaging: A by-product of GTBWT is the propagation of
the whole patches. Thus, we get n transform vectors, each for a
shifted version of the image and those can be averaged.

Xl

HP-Filtering ()
& Sub-sampling ‘

HP-Filtering (Q) - #

& Sub-sampling

x3

4am HP-Filtering (g) 4 HP-Filtering (g)

& Sub-sampling & Sub-sampling
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Image Denoising — Improvements

Sub-image averaging: A by-product of GTBWT is the propagation of
the whole patches. Thus, we get n transform vectors, each for a
shifted version of the image and those can be averaged.

Combine these transformed pieces;

The center row is the transformed

coefficients of f.

 The other rows are also transform
coefficients — of d shifted versions
of the image.

d We can reconstruct d versions

of the image and average.

U O

<<
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Image Denoising — Improvements

Restricting the NN: It appears that when searching the nearest-
neighbor for the ordering, restriction to near-by area is helpful,
both computationally (obviously) and in terms of the output
quality.

Patch of size

Vd x+\/d
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Image Denoising — Improvements

Improved thresholding: Instead of thresholding the wavelet
coefficients based on their value, threshold them based on the
norm of the (transformed) vector they belong to:

U Recall the transformed vectors as described earlier. C]_ 3
O Classical thresholding: every coefficient within C is
passed through the function: =
[]
Ci | Ci,j| >T C_ llllIl=lllllllll
Ci,j = =
0 |eijl<T
U The proposed alternative would be
to force “joint-sparsity” on the above » Ci j | Cx,j |2 =T
array of coefficients, forcing all rows Cij=
Y © Polo e, <T
J 112
Wavelets for Graphs and Its 34
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Image Denoising — Results

L We apply the proposed scheme with the Symmlet 8 wavelet to
noisy versions of the images Lena and Barbara

d For comparison reasons, we also apply to the two images the
K-SVD and BM3D algorithms.

o/PSNR Image  K-SVD BM3D GTBWT

10/28.14
Barbara 34.44 34.94

32.16
25/20.18

Barbara 29.57 30.72

(d The PSNR results are quite good and competitive.
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What Next?

A: Refer to this transform
as an abstract sparsification

We have a 2l
highly effective operator and use it in general
sparsifying image processing tasks
transform for
images. Itis

B: Streep this idea to its
bones: keep the patch-
reordering, and propose a
new way to process images

“linear” and
image adaptive

Wavelets for Graphs and Its
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Interpreting the GTBWT as a Frame
and using it as a Regularizer

This part is documented in the following draft :

O I. Ram, M. Elad, and I. Cohen, “"The RTBWT Frame — Theory and Use for Images”, to
appear in IEEE Trans. on Image Processing.

We rely heavily on :

O Danielyan, Katkovnik, and Eigiazarian, “BM3D frames and Variational Image Deblurring”,
IEEE Trans. on Image Processing, Vol. 21, No. 4, pp. 1715-1728, April 2012.

Y
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Recall Our Core Scheme

Noisy image €): Forward D: Inverse Output image

Or, put differently, X = D - T{Qy}: We refer to GTBWT as a
redundant frame, and use a “heuristic” shrinkage method with it,
which aims to approximate the solution of

Synthesis: & = D - Argmin|[Da — yll3 + 7\”0(”11;
(04

Analysis: & = Argmin||x — y||5 + Allﬂxllg
f
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Recall: Our Transform (Frame)

We obtain an array of
dN]J transform
coefficients

»

¥

3

: f

Lexicographic ordering of (L)

the N pixels (GEEEcasssasssais) A

1 All these operations could
be described as one linear S Esmmasunanes

EEEEEFT" " S“UNEER
BEREF .AEM uEEn

operation: multiplication of R

f by a huge matrix £ e | | dNJ
[ This transform is adaptive CEEE

to the specific image

SNEEENEEEEEEEEER
SEEEENEEEEEEEEER
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What Can We Do With This Frame?

We could solve various inverse problems of the form:

y=Ax+vVv

where: X is the original image
v is an AWGN, and
A is a degradation operator

We could consider the synthesis, the analysis, or their combination:

1 _
ly — Axl|3 + = [IDa — x]|3 + B=0 ", Synthesis
Ay . B p= oo
{% @} = Argmin 1

Wavelets for Graphs and Its 40
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Generalized Nash Equilibrium”

Instead of minimizing the joint analysis/synthesis problem:

|
{& @} = Argminlly — Ax||5 +E
(0.49.¢

break it down into two separate and easy to handle parts:

1
IDa —x[13 + +Alall? + 2 llax - a3

1
Xg+1 = Argmin |ly — Ax|| + < [IDay, — xI13

X B

and solve

iteratively

_ |
Ag+1 = Argmin AIIaIIS + ﬁ 192X 41 — all3
(04

* Danielyan, Katkovnik, and Eigiazarian, "BM3D frames and Variational Image Deblurring”,
IEEE Trans. on Image Processing, Vol. 21, No. 4, pp. 1715-1728, April 2012.
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Deblurring Results
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Deblurring Results

IDD-BM3D
ISNR
init. with

Ours ISNR
3 iterations
with simple

Image

BM3D-DEB
ISNR

Ours ISNR
Init. with

Input
PSNR

BM3D-DEB

Lena 27.25 7.95

Barbara

House 25.61

Cameraman

1
1+i2% +j*

Blur PSF = —7<1,)<7

o2=2
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7.97

9.95

BM3D-DEB
8.08

9.80

initialization
8.20

10.06
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Lets Simplify Things,
Shall We?

This part is based on the papers:

O I. Ram, M. Elad, and I. Cohen, “Image Processing using Smooth Ordering of its Patches”,
IEEE Transactions on Image Processing, Vol. 22, No. 7, pp. 2764-2774 , July 2013.

O I. Ram, I. Cohen, and M. Elad, “Facial Image Compression using Patch-Ordering-Based
Adaptive Wavelet Transform”, Submitted to IEEE Signal Processing Letters.
v Wavelets for Graphs and Its

Deployment to Image Processing
By: Michael Elad
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2D — 1D Conversion ?

Often times, when facing an image processing task (denoising,
compression, ...), the proposed solution starts by a 2D to 1D
conversion :

After such a conversion, the image is treated as a regular 1D
signal, with implied sampled order and causality.

Wavelets for Graphs and Its
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2D — 1D : How to Convert ?

 There are many ways to convert an image into a 1D signal. Two
very common methods are:

Hilbert-

1 Note that both are “space-filling curves” and
image-independent, but we need not restrict
ourselves to these types of 2D —1D conversions.

Deployment to Image Processing 46
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2D — 1D : Why Convert ?

The scientific literature on image processing is loaded with such
conversions, and the reasons are many:

d Because serializing the signal helps later treatment.
J Bec:

>« ARE WE SURE ? -

Kalr

d Because of memory and run-time considerations.

(J Common belief: 2D = 1D conversion leads to a

SUBOPTIMAL SOLUTION !

because of loss of neighborhood relations and forced causality.

¥
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Lets Propose a New 2D — 1D Conversion

How about permuting the pixels into a 1D signal by a

SORT OPERATION ?

We sort -

the gray-values
but also keep the
[X,y] location of
each such value

Wavelets for Graphs and Its 48
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New 2D — 1D Conversion : Smoothness

A
 Given any 2D — 1D conversion based on a permutation P, we

may ask how smooth is the resulting 1D signal obtained :

x104

N
TV{f P} = Zpr(k) — £ k=1
k=2

1 The sort-ordering leads to the smallest possible TV measure, i.e.
it is the smoothest possible.

J Who cares? We all do, as we will see hereafter.
=i
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New 2D — 1D Conversion : An Example

350
300
250
200
150
100

50

-50

-100 -

4
X 10

This means that simple
smoothing of the 1D signal
is likely to lead to a very
good denoising

Find the Sort
Permutation
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New 2D — 1D Conversion : An Example

After smoothing the above
1D signal with a uniform

200

150 201-taps uniform filter, we 1_ ,L {
Ll T"L el TT

100 1l ¢ get (green curve): l

o
i)

Original Noisy 0=30 (18.58dB) Denoised (41.7dB)
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This is Just Great!

This denoising result we just got is nothing short of amazing,
and it is far better than any known method

Is it real? Is it fair?

Neighborhood wise, note that this result is
even better than treating the image
A innative 2D because ...

-— ————_ ..
cos — MM

Wavelets for Graphs and Its
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This is Just Great!

e Stuck ?

Wavelets for Graphs and Its
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We Need an Alternative for Constructing P

Our Goal — Sorting the pixels based
on their TRUE gray value

The problem — the given data is
corrupted and thus pixel
gray-values are not to be trusted
The idea: Assign a feature vector x to
each pixel, to enrich its description
Our approach: Every pixel will be
“represented” by the patch around it
We will design P based on
these feature vectors

Wavelets for Graphs and Its
Deployment to Image Processing
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An Alternative for Constructing P

We will construct P by the

following stages:

1. Break the image into all its
overlapping patches.

2. Each patch represents the
pixel in its center.

3. Find the SHORTEST PATH
passing through the
feature vectors (TSP).

4. This ordering induces the
pixel ordering P.

— I P o o e o
= e — woe o i el | T Tl =y = =
] o i i e e P = o =]
o [ 6 I (S = e R | - -

o [ T e e ™y B ]
] L e R Tl e e T e i el W=
o000 f"_—_—__—:—__ = e S e e e e e G e e o _---E-__
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Traveling Salesman Problem (TSP)

————————>

min ) [lxP =22 |
1=2
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The Proposed Alternative : A Closer Look

Observation 1: Do we Get P ?

If two pixels have the same (or
close) gray value, this does not
mean that their patches are alike.
However ...

If several patches are alike, their
corresponding centers are likely
to be close-by in gray-value

Thus, the proposed ordering
will not reproduce the P, but
at least get close to it,
preserving some of the order.

_~~wr

v
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The Proposed Alternative : A Closer Look

Observation 2: “Shortest-Path” ?

1 In the shortest-path (and TSP), the path

U

=

visits every point once, which aligns
with our desire to permute the pixels
and never replicate them.

If the patch-size is reduced to 1X1
pixels, and the process is applied on
the original (true) image, the
obtained ordering is exactly P.

d TSP Greedy Approximation:\
o Initialize with an arbitrary
index J;
o Initialize the set of chosen
indices to Q(1)={J};
o Repeat k=1:1:N-1 times:
* Find X; —the nearest neighbor
to Xqq such that i¢Q;
e Set Q(k+1)={i};
o Result: the set Q holds the

\_ proposed ordering. )

N N
jn D 0 = fpC— 1] 4o ngn > o |
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The Proposed Alternative : A Closer Look

Observation 3: Corrupted Data ?

O If we stick to patches of size 1X1 pixels,
we will simply sort the pixels in the
degraded image — this is not good nor
informative for anything.

1 The chosen approach has a robustness
w.r.t. the degradation, as we rely on
patches instead of individual pixels.

\
Argmin ) [lx = 2|
i=2

N The order is similar, not
~ ArgminZ”fip — X4 | necessarily the distances
P = themselves
Wavelets for Graphs and Its 59
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The Core Scheme

Corrupted Image

Extract all
patches

Approximate
the TSP

Wavelets for Graphs and Its
Deployment to Image Processing
By: Michael Elad
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Extract
the
induced
ordering

Process the
1D signal
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Why Should This Work

25 (20.18dB)

ition

Intu

Noisy with o

Ordering based on the noisy pixels

Reconstruction: 32.65dB
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The “Simple Smoothing” We Do

Simple We can do
. smoothing but better by a
Training works fine training phase

image

msssmmn)  Apply the

+
permutation —9
r on the pixels _

>
£
- .

S o A

Original image

)

Compute Apply the JAYe]o]\Y;

mm) theTSP  mm) permutation mm) aiD

permutation on the pixels filter h

Noisy image

¥

Naturally, this is done off-line and on other images

Wavelets for Graphs and Its
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Filtering — A Further Improvement

Cluster the patches to smooth and textured sets, and train
a filter per each separately _

The results we show
hereafter were obtained by:
(i) Cycle-spinning

(i) Sub-image averaging
(iii) Two iterations

(iv) Learning the filter, and
(v) Switched smoothing.

Wavelets for Graphs and Its 63
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Denoising Results Using Patch-Reordering

o/PSNR [dB]

10/28.14 25/20.18 50/14.16

K-SVD
BM3D 35.93 32.08 28.86
1stjteration 35.33 31.58 28.54
2"d jteration 35.41 31.81 29.00
Barbara K-SVD 34.41 29.53 25.40
BM3D 34.98 30.72 27.17
1t iteration 34.48 30.46 27.17
2"d jteration 34.46 30.54 27.45
K-SVD 36.00 32.12 28.15
BM3D 36.71 32.86 29.37
1stjteration 35.58 32.48 29.37
2"d jteration 35.94 32.65 29.93

Bottom line: This idea works very well, it is especially competitive for high noise
levels, and a second iteration almost always pays off.
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The Rationale

g

re missin

els are

o=

pIX

w;
%

0.8 of the

SRR

* distance uses

EXISTING
pixels only

*

Ordering
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Inpainting Results — Examples

PSNR= 6.65 dB PSNR=30.25 dB P\\R—“) 9l LlB PSNR=30.25 aIB PSNR=31. ‘)() (IB

'U"! V‘ lm &? 'UJ'. v‘ 'm,! V‘

86 dB

PSNR= 5.84 dB PS\R 29.21 dB P\\R* 29.69 dB PSNR= 29.03 dB PSNR= 32.71 dB

Given data 80% Bi-Cubic Sparse 1stiteration 3" jteration
missing pixels interpolation representation of the of the
recovery proposed alg. proposed alg.

Wavelets for Graphs and Its
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Inpainting Results

Reconstruction results from 80%
missing pixels using various methods:

Bottom line:

(1) This idea works
very well;

(2) Itis operating much better
than the classic sparse-rep.
approach; and

(3) Using more iterations
always pays off, and
substantially so.

Wavelets for Graphs and Its
Deployment to Image Processing
By: Michael Elad
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Method PSNR [dB]
Bi-Cubic 30.25
DCT + OMP 29.97
Proposed (1% iter.) 30.25
Proposed (2" iter.) 31.80
Proposed (3™ iter.) 31.96
Bi-Cubic 22.88
DCT + OMP 27.15
Proposed (1%t iter.) 27.56
Proposed (2" iter.) 29.34
Proposed (3™ iter.) 29.71
Bi-Cubic 29.21
DCT + OMP 29.69
Proposed (1%t iter.) 29.03
Proposed (2" iter.) 32.10
Proposed (3™ iter.) 32.71
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What About Image Compression?

O The problem: Compressing photo-ID images.

O General purpose methods (JPEG, JPEG2000)
do not take into account the specific family.

1 By adapting to the image-content (e.g. pixel
ordering), better results could be obtained.

[ For our technique to operate well, we find the
best common pixel-ordering fitting a training
set of facial images.

[ Our pixel ordering is therefore designed on
patches of size 1X1Xn pixels from the training
volume.

d Geometric alighment of the image is very helpful
and should be done [Goldenberg, Kimmel, & E. (‘05)].

V Wavelets for Graphs and Its
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Compression by Pixel-Ordering

Detect main features and warp the
images (20 bytes)

v

Compute the mean image
and subtract it

¥

Find the common ordering that
creates the smoothest path

¥

2D->1D, apply wavelet and code
leading coefficients

¥

Warp, remove the mean, permute,
apply wavelet on the 1D signal and
code

¥

Wavelets for Graphs and Its
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Results

Y
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Our scheme

RMSE=13.58

RMSE=8.12

400 bytes

ah .

RMSE=9.33

RMSE=6.53

RMSE=5.84

600 bytes 800 bytes

RMSE=7.98
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Rate-Distortion Curves

5 S '
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==+ JPEG-2000
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Part IV — Time to Finish
Conclusions

Wavelets for Graphs and Its
Deployment to Image Processing
By: Michael Elad

72



Conclusions

We propose a new The proposed We demonstrate
wavelet transform for transform extends the ability of

scalar functions the classical these transforms
defined on graphs orthonormal and to efficiently
or high dimensional redundant wavelet represent and

data clouds transforms denoise images
Finally, we show that We also show that the
using the ordering of obtained transform
the patches only, can be used as a
quite effective regularizer in classical
processing of images image processing
can be obtained Inverse-Problems

v
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What Next ?

Exploiting
the known Sparse
CINCIICYW Rcpresentations
and learned
dictionaries in the
Why TSP? Who ordered domain?
says we cannot
revisit patches?

Replace the

Demonstrating ( TSP ordering by

the proposed MDS?
wavelet on
more data

clouds/graphs

Replace
“sub-image Lifting scheme for
ine” wi : : ' ?
averaglng .Wlth a Pixel permutation treating clouds:
sparsifying as regularizer
transform

Wavelets for Graphs and Its
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Thank You all |

Questions?

More on these (including the slides and the relevant papers) can be found in
http://www.cs.technion.ac.il/~elad

gy

v
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Comparison Between D

<

fferent Wavelets

1000 3000 4000
&
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The Representation’s Atoms — Synthetic Image

wavelets wavelets wavelets wavelets wavelets
Scaling functions | = 12 T 1=10 [=9 [=8
image

¢

Ny
wavelets wavelets wavelets wavelets wavelets wavelets wavelets

[=6 [=3 1=2 I=1

' . -
. .
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The Representation’s Atoms — Lenna

wavelets wavelets wavelets wavelets

i ’
5 ¢
- r

image

wavelets wavelets wavelets wavelets wavelets wavelets

=6
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Relation to BM3D?

In a nut-shell, while BM3D searches for patch
neighbors and process them locally, our approach
3D Transforn ~ Seeks one path through all the patches (each gets
& threshold . .

its own neighbors as a consequence), and the

o\ eventual processing is done globally. ) -

& threshold /

q

Reorder, GTBWT,
and threshold
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2D — 1D Processing Examples

DPCM Image Compression

h IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-23, NO. 4, JULY 1977

Kalman Filtering in Two Dimensions

JOHN W. WOODS, MEMBER, IEEE, AND CLARK H. RADEWAN, MEMBER, IEEE

Abstract—The Kalman filtering method is extended to two di- We start with a brief review of the concept of state and

mensions, The resulting computational load is found to be excessive. its role in 1-D Kalman filtering. Then we define the 2-D

L] L]
D e n O I S I n g T'wo new approximations are then introduced. One, called the strip Kalman scalar and vector filters, and we point out their

processor, updates a line segment at a time; the other, called the 2 5 PR
reduced update Kalman filter, is a scalar processor. The reduced Undesirable computational properties in that the state

update Kalman filter is shown to be optimum in that it minimizes  vector grows with the image size. Next, we present the

the post update mean-square error (mse) under the constraint of  Kalman strip filter and the reduced update Kalman filter.
updating only the nearby previously processed neighbors. There-  Rinally, we present examples of application of the filters

sulting filter is a general two-dimensional recursive filter. . - :
in a simulated data environment.

While this 2D — 1D trend is an “old-fashion” trick, it is still very
much active and popular in industry and academic work.
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