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This Talk is About …

The true 
objective: Find 
how to bring 

sparse 
representation 
to processing of 

such signals

Processing of Non-
Conventionally 

Structured Signals 

Many signal-
processing tools 

(filters, alg., 
transforms, …) 
are tailored for 

uniformly 
sampled signals 

Now we encounter 
different types of 

signals: e.g., point-
clouds and graphs. 

Can we extend 
classical tools to 

these signals?

Our goal: 
Generalize the 

wavelet 
transform to 
handle this 

broad family 
of signals

As you will see, we will use the 
developed tools to process 

“regular” signals (e.g., images) , 
handling them differently and             

more effectively
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Part I – GTBWT                
Generalized Tree-Based 

Wavelet Transform – The Basics
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This part is taken from the following two papers : 

 I. Ram, M. Elad, and I. Cohen, “Generalized Tree-Based Wavelet Transform”, IEEE Trans. 

Signal Processing, vol. 59, no. 9, pp. 4199–4209, 2011.

 I. Ram, M. Elad, and I. Cohen, “Redundant Wavelets on Graphs and High Dimensional 

Data Clouds”, IEEE Signal Processing Letters, Vol. 19, No. 5, pp. 291–294 , May 2012.
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Problem Formulation
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A Different Way to Look at this Data
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…

…



Wavelets for Graphs and Its                                            
Deployment to Image Processing
By: Michael Elad

7

Our Goal

Wavelet 
Transform

Sparse    
(compact)    

Representation

Why Wavelet? 
 Wavelet for regular piece-wise smooth signals is a highly effective 

“sparsifying transform”. However, the signal (vector) f is not necessarily 
smooth in general.

 We would like to imitate this for our data structure.
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“Diffusion Wavelets”

R. R. Coifman, and M. Maggioni, 2006.

“Multiscale Methods for Data on Graphs and Irregular …. Situations”
M. Jansen, G. P. Nason, and B. W. Silverman, 2008.

“Wavelets on Graph via Spectal Graph Theory”
D. K. Hammond, and P. Vandergheynst, and R. Gribonval, 2010.

“Multiscale Wavelets on Trees, Graphs and High … Supervised Learning”
M . Gavish, and B. Nadler, and R. R. Coifman, 2010.

“Wavelet Shrinkage on Paths for Denoising of Scattered Data”
D. Heinen and G. Plonka, 2012.

…

Wavelet for Graphs – A Wonderful Idea

8

I wish we would have thought of it first … 

http://www.math.duke.edu/~mauro/Papers/DiffusionWavelets.pdf
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-9868.2008.00672.x/pdf
http://arxiv.org/pdf/0912.3848v1.pdf
http://www.wisdom.weizmann.ac.il/~nadler/Publications/wavelets_trees_p18.pdf
http://na.math.uni-goettingen.de/pdf/MR-denoising.pdf
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The Main Idea (1) - Permutation

P T T-1 P-1Processing

Permutation 1D Wavelet
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The Main Idea (2) - Permutation

 In fact, we propose to perform a different permutation in each resolution 
level of the multi-scale pyramid:

 Naturally, these permutations will be applied reversely in the inverse 
transform. 

 Thus, the difference between this and the plain 1D wavelet transform 
applied on f are the additional permutations, thus preserving the 
transform’s linearity and unitarity, while also adapting to the input signal. 
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Building the Permutations (1)

 Lets start with P0 – the permutation applied on the incoming signal.

 Recall: the wavelet transform is most effective for piecewise regular signals. 
→ thus, P0 should be chosen such that P0f is most “regular”.

 Lets use the feature vectors in X, reflecting  the order of the values, fk. Recall: 

 Thus, instead of solving for the optimal permutation that “simplifies” f, we  
order the features in X to the shortest path that visits in each point once, in 
what will be an instance of the Traveling-Salesman-Problem (TSP):
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Building the Permutations (2)

We handle the TSP task by a 
greedy (and crude) approximation: 

o Initialize with an arbitrary index j; 
o Initialize the set of chosen indices to Ω(1)={j};
o Repeat k=1:1:N-1 times:

• Find xi – the nearest neighbor to xΩ(k) such that iΩ; 
• Set Ω(k+1)={i};

o Result: the set Ω holds the proposed ordering.
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Building the Permutations (3)

 So far we concentrated on P0 at the finest level of the multi-scale pyramid.

 In order to construct P1, P2, … , PL-1, the permutations at the other pyramid’s  
levels, we use the same method, applied on propagated (reordered, filtered 
and sub-sampled) feature-vectors through the same wavelet pyramid:

P0
LP-Filtering (h) 

& Sub-sampling P1
LP-Filtering (h) 

& Sub-sampling 

P2
LP-Filtering (h) 

& Sub-sampling P3
LP-Filtering (h) 

& Sub-sampling 
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Why “Generalized Tree …”? 

“Generalized” tree Tree (Haar wavelet)

 Our proposed transform: Generalized Tree-Based Wavelet Transform (GTBWT).

 We also developed a Redundant version of this transform based on the 
stationary wavelet transform [Shensa, 1992] [Beylkin, 1992] – also related to the 
“A-Trous Wavelet” (will not be presented here).
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Treating Graph/Cloud-of-points

 Just to complete the picture, we should demonstrate the 
(R)GTBWT capabilities on graphs/cloud of points.

We took several classical machine learning train + test                                            
data for several regression problems, and tested                                                 
the proposed transform in 

 Cleaning (denoising) the data from additive noise;

 Filling in missing values (semi-supervised learning); and 

 Detecting anomalies (outliers) in the data.

 The results are encouraging. We shall present herein  one such 
experiment briefly. 

SKIP?
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Treating Graphs: The Data

Data Set: Relative Location of CT axial axis slices

More details: Overall 53500 such pairs of feature and value, extracted 
from 74 different patients (43 male and 31 female). 

Feature vector of 
length 384Compute 

bones and 
air polar 

Histograms

Labels: Location in 
the body [0,180]cm 

http://archive.ics.uci.edu/ml/datasets/Relative+location+of+CT+slices+on+axial+axis
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Treating Graphs: Denoising

Find for each point its K-NN in feature-space, and 
compute a weighted average of their labels

. . . 

Original 
labels

+

AWGN

. . . 

Noisy 
labels

Denoising by NLM-
like algorithm 

Apply the RTBWT transform to the point-cloud 
labels, threshold the values and transform back

Denoising by THR 
with RTBWT
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Treating Graphs: Denoising

5 10 15 20
5

10

15

20

25

30

35

noise standard deviation

S
N

R
 [
d

B
]

noisy signal

RTBWT

NL-means
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Treating Graphs: Semi-Supervised Learning

Find for each missing point its K-NN in 
feature-space that have a label, and 
compute a weighted average of their labels

. . . 

Original 
labels

+

AWGN

Filling-in by NLM-
like algorithm 

Denoising 
by RTBWT

Option: 
Iterate

. . . 

Noisy and 
missing  

labels

Discard 
p% of the 

labels 
randomly 

Denoising
by NLM 

ProjectionProjection
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Treating Graphs: Semi-Supervised Learning 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

5
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# missing samples

S
N

R
 [
d

B
]

=20
Corrupted

NL-means

RTBWT (iter 2)

NL-means (iter 2)

RTBWT (iter 3)

NL-means (iter 3)
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Treating Graphs: Semi-Supervised Learning 
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Part II – Handling Images                
Using GTBWT for                    
Handling Images
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This part is taken from the same papers mentioned before …

 I. Ram, M. Elad, and I. Cohen, “Generalized Tree-Based Wavelet Transform”, IEEE Trans. 

Signal Processing, vol. 59, no. 9, pp. 4199–4209, 2011.

 I. Ram, M. Elad, and I. Cohen, “Redundant Wavelets on Graphs and High Dimensional 

Data Clouds”, IEEE Signal Processing Letters, Vol. 19, No. 5, pp. 291–294 , May 2012.
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 Now, that the image is organized as a graph (or                        
point- cloud), we can  apply the developed transform. 

 The distance measure w(, ) we will be using is Euclidean.
 After this “conversion”, we forget about spatial proximities.
 The overall scheme becomes “yet another” patch-based            

image processing algorithm …

Turning an Image into a Graph? 
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Patches … Patches … Patches … 

Various Ideas:
Non-local-means
Kernel regression
Sparse representations
Locally-learned dictionaries
BM3D
Structured sparsity
Structural clustering 
Subspace clustering 
Gaussian-mixture-models
Non-local sparse rep.
Self-similarity
Manifold learning
…

In the past decade we see more and more researchers suggesting to 
process a signal or an image by operating on its patches. 

You

& … You?
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Our Transform
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The Representation’s Atoms 
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Lets Test It: M-Term Approximation

Original Image

Output image
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0 2000 4000 6000 8000 10000
10

15

20

25

30

35

40

45

50

55

# Coefficients

P
S

N
R

GTBWT – permutation
at varying level

common 1D

2D

db4

Lets Test It: M-Term Approximation

For a 128×128 center portion of 
the image Lenna, we compare the 
image representation efficiency of 
the

 GTBWT
 A common 1D wavelet transform
 2D wavelet transform
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Lets Test It: Image Denoising
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Noisy image Output image

Denoising 
Algorithm+
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Image Denoising – Improvements 
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Cycle-spinning: Apply the above scheme several (10) times, with a 
different GTBWT (different random ordering), and average. 

Noisy 
image

GTBWT THR GTBWT-1

Averaging

GTBWT THR GTBWT-1

Reconstructed 
image
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P1
LP-Filtering (h) 

& Sub-sampling 

Image Denoising – Improvements 

Sub-image averaging: A by-product of GTBWT is the propagation of 
the whole patches. Thus, we get n transform vectors, each for a 
shifted version of the image and those can be averaged. 

P0
LP-Filtering (h) 

& Sub-sampling 

P2
LP-Filtering (h) 

& Sub-sampling P3
LP-Filtering (h) 

& Sub-sampling 

HP-Filtering (g) 
& Sub-sampling 

HP-Filtering (g) 
& Sub-sampling 

HP-Filtering (g) 
& Sub-sampling 

HP-Filtering (g) 
& Sub-sampling 

31
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Image Denoising – Improvements 

P1
LP-Filtering (h) 

& Sub-sampling P0
LP-Filtering (h) 

& Sub-sampling 

P2
LP-Filtering (h) 

& Sub-sampling P3
LP-Filtering (h) 

& Sub-sampling 

HP-Filtering (g) 
& Sub-sampling 

HP-Filtering (g) 
& Sub-sampling 

HP-Filtering (g) 
& Sub-sampling 

HP-Filtering (g) 
& Sub-sampling 

Sub-image averaging: A by-product of GTBWT is the propagation of 
the whole patches. Thus, we get n transform vectors, each for a 
shifted version of the image and those can be averaged. 

 Combine these transformed pieces; 
 The center row is the transformed  

coefficients of f. 
 The other rows are also transform 

coefficients – of d shifted versions  
of the image.

 We can reconstruct d versions  
of the image and average.

32
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Image Denoising – Improvements 
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Restricting the NN: It appears that when searching the nearest-
neighbor for the ordering, restriction to near-by area is helpful, 
both computationally (obviously) and in terms of the output 
quality.
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Image Denoising – Improvements 

34



Wavelets for Graphs and Its                                            
Deployment to Image Processing
By: Michael Elad

Image Denoising – Results 
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 We apply the proposed scheme with the Symmlet 8 wavelet to                         
noisy versions of the images Lena and Barbara

 For comparison reasons, we also apply to the two images the                           
K-SVD and BM3D algorithms.

 The PSNR results are quite good and competitive.

/PSNR Image K-SVD BM3D GTBWT

10/28.14
Lena 35.51 35.93 35.87

Barbara 34.44 34.98 34.94

25/20.18
Lena 31.36 32.08 32.16

Barbara 29.57 30.72 30.75
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What Next?

A: Refer to this transform 

as an abstract sparsification
operator and use it in general 

image processing tasks

B: Streep this idea to its 

bones: keep the patch-
reordering, and propose a 

new way to process images

We have a 
highly effective 

sparsifying
transform for 
images. It is 
“linear” and 

image adaptive

SKIP?
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Part III – Frame                              
Interpreting the GTBWT as a Frame 

and using it as a Regularizer
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This part is documented in the following draft : 

 I. Ram, M. Elad, and I. Cohen, “The RTBWT Frame – Theory and Use for Images”, to 

appear in IEEE Trans. on Image Processing.

We rely heavily on :

 Danielyan, Katkovnik, and Eigiazarian, “BM3D frames and Variational Image Deblurring”, 

IEEE Trans. on Image Processing, Vol. 21, No. 4, pp. 1715-1728, April 2012.
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Recall Our Core Scheme

38

Or, put differently,                            : We refer to GTBWT as a 
redundant frame, and use a “heuristic” shrinkage method with it, 
which aims to approximate the solution of 

Synthesis:
or 

Analysis:   

Noisy image Output image
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Recall: Our Transform (Frame)
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What Can We Do With This Frame? 
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We could solve various inverse problems of the form:

where: x is the original image
v is an AWGN, and 
A is a degradation operator of any sort

We could consider the synthesis, the analysis, or their combination:
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Generalized Nash Equilibrium 

41

* Danielyan, Katkovnik, and Eigiazarian, “BM3D frames and Variational Image Deblurring”, 
IEEE Trans. on Image Processing, Vol. 21, No. 4, pp. 1715-1728, April 2012.

and solve 
iteratively

*

Instead of minimizing the joint analysis/synthesis problem:

break it down into two separate and easy to handle parts:
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Deblurring Results

42

Original               Blurred+Noisy Restored
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Deblurring Results
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Image
Input 
PSNR

BM3D-DEB 
ISNR

IDD-BM3D 
ISNR                

init. with            
BM3D-DEB

Ours ISNR
Init. with 

BM3D-DEB

Ours ISNR    
3 iterations
with simple 
initialization

Lena 27.25 7.95 7.97 8.08 8.20

Barbara 23.34 7.80 7.64 8.25 6.21

House 25.61 9.32 9.95 9.80 10.06

Cameraman 22.23 8.19 8.85 9.19 8.52

Blur PSF =

2=2
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Part IV – Patch (Re)-Ordering 
Lets Simplify Things,                               

Shall We?
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This part is based on the papers: 

 I. Ram, M. Elad, and I. Cohen, “Image Processing using Smooth Ordering of its Patches”, 

IEEE Transactions on Image Processing, Vol. 22, No. 7, pp. 2764–2774 , July 2013.

 I. Ram, I. Cohen, and M. Elad, “Facial Image Compression using Patch-Ordering-Based 

Adaptive Wavelet Transform”, Submitted to IEEE Signal Processing Letters.
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2D → 1D Conversion ?

Often times, when facing an image processing task (denoising, 
compression, …), the proposed solution starts by a 2D to 1D 
conversion : 

After such a conversion, the image is treated as a regular 1D 
signal, with implied sampled order and causality. 
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2D → 1D : How to Convert ?

 There are many ways to convert an image into a 1D signal. Two 
very common methods are:

 Note that both are “space-filling curves” and                                            
image-independent, but we need not restrict                                              
ourselves to these types of 2D →1D conversions. 

Raster 
Scan

Hilbert-
Peano
Scan
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2D → 1D : Why Convert ?

The scientific literature on image processing is loaded with such 
conversions, and the reasons are many:

 Because serializing the signal helps later treatment.

 Because (imposed) causality can simplify things.

 Because this enables us to borrow ideas from 1D signal processing (e.g. 
Kalman filter, recursive filters, adaptive filters, prediction, …).

 Because of memory and run-time considerations. 

 Common belief: 2D → 1D conversion leads to a 

S U B O P T I M A L     S O L U T I O N ! ! 
because of loss of neighborhood relations and forced causality.

ARE WE SURE ?
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Lets Propose a New 2D → 1D Conversion

How about permuting the pixels into a 1D signal by a 

SORT OPERATION ?

0 1 2 3 4 5 6 7

x 10
4

0

50

100

150

200

250

We sort            
the gray-values 
but also keep the 
[x,y] location of 
each such value

2D→1D
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New 2D → 1D Conversion : Smoothness

0 1 2 3 4 5 6 7

x10
4

0

50

100

150

200

250

2D → 1D
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New 2D → 1D Conversion : An Example

Find the Sort 
Permutation 

2D→1D

0 1 2 3 4 5 6 7

x 10
4

-100

-50

0

50

100

150

200

250

300

350

This means that simple 
smoothing of the 1D signal 

is likely to lead to a very 
good denoising
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New 2D → 1D Conversion : An Example

Original                Noisy =30  (18.58dB)    Denoised (41.7dB)

0 1 2 3 4 5 6 7

x10
4

-50

0

50

100

150

200

250

300

350

After smoothing the above 
1D signal with a uniform 

201-taps uniform filter, we 
get (green curve):
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This is Just Great! Isn’t It? 

This denoising result we just got is nothing short of amazing,                
and it is far better than any known method

Is it real? Is it fair? 

Neighborhood wise, note that this result is         
even better than treating the image 

in native 2D because … 
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This is Just Great! Isn’t It? 

So, Are 
We Stuck ?
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We Need an Alternative for Constructing P

Our Goal – Sorting the pixels based  
on their TRUE gray value

The problem – the given data is 
corrupted and thus pixel                           

gray-values are not to be trusted

The idea: Assign a feature vector x to 
each pixel, to enrich its description

Our approach: Every pixel will be 
“represented” by the patch around it

We will design P based on                      
these feature vectors
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An Alternative for Constructing P

We will construct P by the 
following stages: 
1. Break the image into all its 

overlapping patches.
2. Each patch represents the 

pixel in its center.
3. Find the SHORTEST PATH 

passing through the 
feature vectors (TSP).

4. This ordering induces the 
pixel ordering P.
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Traveling Salesman Problem (TSP)
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The Proposed Alternative : A Closer Look

Observation 1: Do we Get P ?

If two pixels have the same (or               
close) gray value, this does not                    

mean that their patches are alike.
However … 

If several patches are alike, their 
corresponding centers are likely                       

to be close-by in gray-value

Thus, the proposed ordering 
will not reproduce the P, but    
at least get close to it, 
preserving some of the order.
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The Proposed Alternative : A Closer Look

Observation 2: “Shortest-Path” ? 

 In the shortest-path (and TSP), the path  
visits every point once, which aligns  
with our desire to permute the pixels                 
and never replicate them.

 If the patch-size is reduced to 1×1         
pixels, and the process is applied on               
the original (true) image, the                     
obtained ordering is exactly P. 

TSP Greedy Approximation:

o Initialize with an arbitrary       
index j; 

o Initialize the set of chosen 
indices to Ω(1)={j};

oRepeat k=1:1:N-1 times:
• Find xi – the nearest neighbor 

to xΩ(k) such that iΩ; 
• Set Ω(k+1)={i};

oResult: the set Ω holds the 
proposed ordering.
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The Proposed Alternative : A Closer Look

Observation 3: Corrupted Data ? 

 If we stick to patches of size 1×1 pixels, 
we will simply sort the pixels in the 
degraded image – this is not good nor 
informative for anything.

 The chosen approach has a robustness 
w.r.t. the degradation, as we rely on 
patches instead of individual pixels.

The order is similar, not 
necessarily the distances 

themselves
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Extract 
the 

induced 
ordering
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The Core Scheme

2D→1D

Extract all 
patches

Approximate 
the TSP

…

Process the 
1D signal

Corrupted Image

1D→2D
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Intuition: Why Should This Work? 

Ordering based on the noisy pixels 

Simple smoothing

Noisy with =25 (20.18dB)

Reconstruction: 32.65dB

True samples
Noisy samples
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The “Simple Smoothing” We Do

Simple 
smoothing 
works fine

optimize h to 
minimize the 

reconstruction 
MSE

Original image

Noisy image

Compute  
the TSP 

permutation

Apply the 
permutation 
on the pixels

Apply the 
permutation 
on the pixels

Apply          
a 1D             

filter h

+

-

We can do 
better by a 

training phase
but 

Naturally, this is done off-line and on other images

Training 
image
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Filtering – A Further Improvement

Cluster the patches to smooth and textured sets, and train 
a filter per each separately

The results we show 
hereafter were obtained by: 
(i) Cycle-spinning
(ii) Sub-image averaging 
(iii) Two iterations
(iv) Learning the filter, and 
(v) Switched  smoothing.

Based on patch-STD
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Denoising Results Using Patch-Reordering

Image σ/PSNR [dB]

10 / 28.14 25 / 20.18 50 / 14.16

Lena K-SVD 35.49 31.36 27.82

BM3D 35.93 32.08 28.86

1st iteration 35.33 31.58 28.54

2nd iteration 35.41 31.81 29.00

Barbara K-SVD 34.41 29.53 25.40

BM3D 34.98 30.72 27.17

1st iteration 34.48 30.46 27.17

2nd iteration 34.46 30.54 27.45

House K-SVD 36.00 32.12 28.15

BM3D 36.71 32.86 29.37

1st iteration 35.58 32.48 29.37

2nd iteration 35.94 32.65 29.93

Bottom line: This idea works very well, it is especially competitive for high noise 
levels, and  a second iteration almost always pays off.  
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The Rationale

0.8 of the pixels are missing 

Reconstruction: 27.15dB Ordering*

Simple interpolation

Missing sample
Existing sample

* distance uses 
EXISTING 
pixels only
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Inpainting Results – Examples 

Given data 80% 
missing pixels

1st iteration        
of the         

proposed alg.

Sparse 
representation 

recovery

Bi-Cubic 
interpolation

3rd iteration      
of the        

proposed alg.
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Inpainting Results Image Method PSNR [dB]

Lena

Bi-Cubic 30.25

DCT + OMP 29.97

Proposed (1st iter.) 30.25

Proposed (2nd iter.) 31.80

Proposed (3rd iter.) 31.96

Barbara

Bi-Cubic 22.88

DCT + OMP 27.15

Proposed (1st iter.) 27.56

Proposed (2nd iter.) 29.34

Proposed (3rd iter.) 29.71

House

Bi-Cubic 29.21

DCT + OMP 29.69

Proposed (1st iter.) 29.03

Proposed (2nd iter.) 32.10

Proposed (3rd iter.) 32.71

Reconstruction results from 80%            
missing pixels using various methods: 

Bottom line: 
(1) This idea works                 

very well;
(2) It is operating much better 

than the classic sparse-rep. 
approach; and 

(3) Using more iterations 
always pays off, and 
substantially so.  
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What About Image Compression?

 The problem: Compressing photo-ID images.

 General purpose methods (JPEG, JPEG2000)                                              
do not take into account the specific family. 

 By adapting to the image-content (e.g. pixel                                                                      
ordering), better results could be obtained.

 For our technique to operate well, we find the                                                             
best common pixel-ordering fitting a training                                                                      
set of facial images.

 Our pixel ordering is therefore designed on                                                                 
patches of size 1×1×n pixels from the training                                                             
volume.

 Geometric alignment of the image is very helpful                                                
and should be done [Goldenberg, Kimmel, & E. (‘05)]. 

1×1 
pixels

SKIP?
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Compression by Pixel-Ordering

Training set (2500 images)Detect main features and warp the 
images (20 bytes) 

O
n

 th
e train

in
g set

Find the common ordering that 
creates the smoothest path

Warp, remove the mean,  permute, 
apply wavelet on the 1D signal and 

code

On the        
test image

2D→1D, apply wavelet and code 
leading coefficients

Compute the mean image                 
and subtract it



Wavelets for Graphs and Its                                            
Deployment to Image Processing
By: Michael Elad

70

Results

The original images 

JPEG2000 

Our scheme 

400 bytes 600 bytes 800 bytes 
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Rate-Distortion Curves

Our Scheme
Our Scheme + PP
K-SVD + PP
JPEG-2000
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Part IV – Time to Finish 
Conclusions

72
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Conclusions
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We propose a new 
wavelet transform for 

scalar functions 
defined on graphs 

or high dimensional 
data clouds

The proposed 
transform extends 

the classical 
orthonormal and 

redundant wavelet 
transforms 

We demonstrate 
the ability of 

these transforms 
to efficiently 

represent and 
denoise images

We also show that the 
obtained transform           

can be used as a      
regularizer in classical                   

image processing                 
Inverse-Problems

Finally, we show that 
using the ordering of 

the patches only, 
quite effective 

processing of images 
can be obtained
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Sparse 
Representations 

and learned 
dictionaries in the 
ordered domain?
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What Next ?

74

Improving   the 
TSP 

approximation 
solver

Demonstrating 
the proposed 

wavelet on 
more data 

clouds/graphs
Why TSP? Who 
says we cannot 
revisit patches? 

Replace the  
TSP ordering by 

MDS?

Replace               
“sub-image 

averaging” with a 
sparsifying
transform 

Exploiting        
the known 
distances?

Pixel permutation 
as regularizer?

Lifting scheme for 
treating clouds? 
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Thank You all !

Questions?

More on these (including the slides and the relevant papers) can be found in 
http://www.cs.technion.ac.il/~elad
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Comparison Between Different Wavelets

db1 (Haar) db4

db8

GTBWT
comparison

76
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The Representation’s Atoms – Synthetic Image 

Scaling functions 

Original
image

wavelets wavelets wavelets wavelets waveletswavelets wavelets

wavelets wavelets wavelets wavelets wavelets

77
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Scaling functions 

Original
image

wavelets wavelets waveletswavelets wavelets

wavelets wavelets wavelets wavelets

wavelets

The Representation’s Atoms – Lenna
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3D Transform  
& threshold

3D Transform  
& threshold

Relation to BM3D?

79

BM3D Our scheme

GTBWT, 
and threshold

Reorder, 

In a nut-shell, while BM3D searches for patch 
neighbors and process them locally, our approach 
seeks one path through all the patches (each gets 

its own neighbors as a consequence), and the 
eventual processing is done globally.
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2D → 1D Processing Examples

DPCM Image Compression

Kalman Filtering for 
Denoising

While this 2D → 1D trend is an “old-fashion” trick, it is still very 
much active and popular in industry and academic work.


